网上找了好久没找到能用的,索性自己写个来的更快。。。
方法比较粗暴,没咋细究,若有bug欢迎留言~~
需求:
- NMS中的IOU相关,是选择一个最大或者可信度最高的框框保留。
- 而我们现在试需要将重叠框框合并为一个大的框框,所以不能直接用上面的。
- 并且OpenCV的groupRectangles在Python中我实在用不懂,而且它会把不重叠的框直接删了。。
原理:
- 循环+递归,依次判断两个框是否有重叠。
效果:
参考代码:
import cv2
import numpy as np
def checkOverlap(boxa, boxb):
x1, y1, w1, h1 = boxa
x2, y2, w2, h2 = boxb
if (x1 > x2 + w2):
return 0
if (y1 > y2 + h2):
return 0
if (x1 + w1 < x2):
return 0
if (y1 + h1 < y2):
return 0
colInt = abs(min(x1 + w1, x2 + w2) - max(x1, x2))
rowInt = abs(min(y1 + h1, y2 + h2) - max(y1, y2))
overlap_area = colInt * rowInt
area1 = w1 * h1
area2 = w2 * h2
return overlap_area / (area1 + area2 - overlap_area)
def unionBox(a, b):
x = min(a[0], b[0])
y = min(a[1], b[1])
w = max(a[0] + a[2], b[0] + b[2]) - x
h = max(a[1] + a[3], b[1] + b[3]) - y
return [x, y, w, h]
def intersectionBox(a, b):
x = max(a[0], b[0])
y = max(a[1], b[1])
w = min(a[0] + a[2], b[0] + b[2]) - x
h = min(a[1] + a[3], b[1] + b[3]) - y
if w < 0 or h < 0:
return ()
return [x, y, w, h]
def rectMerge_sxf(rects: []):
# rects => [[x1, y1, w1, h1], [x2, y2, w2, h2], ...]
'''
当通过connectedComponentsWithStats找到rects坐标时,
注意前2個坐标是表示整個圖的,需要去除,不然就只有一個大框,
在执行此函数前,可执行类似下面的操作。
rectList = sorted(rectList)[2:]
'''
rectList = rects.copy()
rectList.sort()
new_array = []
complete = 1
# 要用while,不能forEach,因爲rectList內容會變
i = 0
while i < len(rectList):
# 選後面的即可,前面的已經判斷過了,不需要重復操作
j = i + 1
succees_once = 0
while j < len(rectList):
boxa = rectList[i]
boxb = rectList[j]
# 判斷是否有重疊,注意只針對水平+垂直情況,有角度旋轉的不行
if checkOverlap(boxa, boxb): # intersectionBox(boxa, boxb)
complete = 0
# 將合並後的矩陣加入候選區
new_array.append(unionBox(boxa, boxb))
succees_once = 1
# 從原列表中刪除,因爲這兩個已經合並了,不刪除會導致重復計算
rectList.remove(boxa)
rectList.remove(boxb)
break
j += 1
if succees_once:
# 成功合並了一次,此時i不需要+1,因爲上面進行了remove(boxb)操作
continue
i += 1
# 剩餘項是不重疊的,直接加進來即可
new_array.extend(rectList)
# 0: 可能還有未合並的,遞歸調用;
# 1: 本次沒有合並項,說明全部是分開的,可以結束退出
if complete == 0:
complete, new_array = rectMerge_sxf(new_array)
return complete, new_array
box = [[20, 20, 20, 20], [100, 100, 100, 100], [60, 60, 50, 50], [50, 50, 50, 50]]
_, res = rectMerge_sxf(box)
print(res)
print(box)
img = np.ones([256, 256, 3], np.uint8)
for x,y,w,h in box:
img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 255, 0), 2)
cv2.imshow('origin', img)
img = np.ones([256, 256, 3], np.uint8)
for x,y,w,h in res:
img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 0, 255), 2)
cv2.imshow('after', img)
cv2.waitKey(0)
评论 (0)